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Thermohaline convection in a salt water loop is discussed. Fluid temperature is affected 
by relaxation on the loop surface and fluid salinity by a freshwater flux through the 
loop surface. In addition, other boundary conditions on salinity, such as the equivalent 
virtual salt flux or salinity relaxation condition, are examined and the dynamic role of 
diffusion in thermohaline convection is analysed. 

Both analytical and numerical analyses indicate that the system behaviour depends 
sensitively on the nature of the salinity boundary condition. For the saline-only loop 
model, analysis indicates that perturbations are advected by the mean flow, and flow 
stability is independent of the strength of the boundary forcing. In the full thermohaline 
loop problem, the virtual salt flux formulation accurately mirrors the freshwater flux 
results when the system is in the thermal mode. However, these formulations can differ 
substantially when the system is in the haline mode, especially in the strongly forced, 
weakly diffusive limit. 

For both types of loop configuration, salinity profiles governed by freshwater flux 
have scales determined by the internal parameters, while virtual salt flux profiles 
necessarily reflect the lengthscales of applied boundary conditions. Negative salinities 
can also appear under virtual salt flux owing to the inaccuracies inherent in the 
approximation, while freshwater flux ensures positive-definite salinity values. 

Our analysis supports the use of the physically more accurate freshwater flux 
boundary conditions when simulating thermohaline circulation. 

1. Introduction 
A problem of considerable significance in fluid mechanics is that of convection. 

Numerous past convection studies have examined fluids whose density is set by heat; 
a far smaller number have considered fluids with dissolved solutes, where density can 
be affected by the addition or removal of freshwater. Associated with this is a 
considerable distinction in the interactions of these two fluid types with their 
environments. 

Here we use the classical loop oscillator paradigm to analyse convection in the latter 
type of fluid. First, the impact of freshwater flux on convection in fluids with solutes 
is computed and compared to the behaviour found using approximations of such 
forcing. (The latter are widely used in climate models.) Secondly, convection in a fluid 
sensitive to both heat and solute concentration is calculated. Both of these areas are 
suggested by, and have implications for, climate modelling. 
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1.1. Background 
Loop models have been used extensively in the study of thermal convection. Early 
works include those of Keller (1966), Welander (1967) and Malkus (1972). More 
recently, such models have received considerable attention in the engineering literature 
(see Wang & Bau 1992 for a recent review). In the classical studies, the fluid was heated 
from below and cooled from above by means of relaxation conditions on temperature. 
Some recent oceanic thermohaline models have exhibited decadal scale variability, the 
dynamics of which have been linked to the mechanics in these models (e.g. Welander 
1967 and, more recently, Walin 1985). The full density of seawater, however, is set 
jointly by temperature ( T )  and salinity (S), and loop oscillator studies in an oceanic 
context, in which both T and S were subject to relaxation, have been conducted by 
Welander (1986). Winton & Sarachik (1993) examined a variant of the Welander model 
( T  was fixed in their calculations) in order to diagnose the dynamics of the salt 
oscillations found in their two- and three-dimensional general circulation model 
results. 

The motivation for the latter studies of the so-called thermohaline circulation come 
from satellite radiation measurements, which suggest that the oceans and atmosphere 
play comparable roles in setting the climate of the Earth (Trenberth & Solomon 1994). 
The models which have been brought to bear on the climate problem range from very 
complex coupled ocean-atmosphere numerical simulations to simple process-oriented 
analytical models. An example of the latter, which has had tremendous impact on the 
field, is the classical box model of Stommel (1961). In this deceptively simple 
calculation, boxes connected by pipes exchanged fluid at rates determined by their 
relative densities. These densities in turn were set by the competing effects of heat and 
salt, and it was demonstrated that the differing properties of these quantities led to 
more than one possible circulation pattern. The potential for the oceanic overturning 
cell to exist in more than one configuration is clearly of considerable significance to the 
Earth’s climate in general, as well as to our capacity to assess the climatic impact of 
human activity. 

Since the appearance of this seminal work, box models have been used to examine 
several aspects of the oceanic thermohaline circulation and have also proven useful in 
diagnosing the climate mechanics of numerical general circulation models (GCMs). In 
spite of their elegance, it must, however, be admitted that box models do not readily 
allow an examination of several processes which are probably essential to GCM 
performance and to the real climate. This serves as partial motivation for our efforts 
here to examine thermohaline convection through an analysis of a very simple loop 
oscillator. This model represents a level of complexity (and hopefully realism) beyond 
box models, while retaining sufficient simplicity so as to allow extensive study. We 
discuss here rather simple model geometries and forcing fields, thus yielding analytical 
and numerical tractability. Cases with more complicated geometry and forcing fields 
can easily be studied numerically. 

1.2. Salinity boundary conditions 
Early numerical investigations of climate generally modelled the exchanges of heat and 
salinity at the air-sea interface by means of identical relaxation laws (frequently 
referred to as ‘Haney’ relaxation). This occurred even though Stommel (1961) 
suggested that significant aspects of climate behaviour depended on the differences in 
their surface exchange processes. The modern era of climate modelling was opened by 
Bryan (1986), who examined a primitive-equation general circulation model subject to 
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so-called ‘mixed ’ boundary conditions (consisting of a relaxation law on temperature 
and a specification of salinity flux). He demonstrated the existence of multiple 
equilibria in such models, the nature of which were consistent with those originally 
predicted by Stommel (1961). Since this exciting result, many numerical studies 
involving mixed boundary conditions have been conducted (Marotzke & Willebrand 
1991 ; Weaver & Sarachik 1991 ; England 1993), and much attention has been given to 
the different sorts of steady states resident therein, as well as to the existence of 
oscillatory solutions. Many of these GCM studies have been at least partially 
understood through the use of box models (Thual & McWilliams 1992; Marotzke 
1994). 

Among other things, these studies show that the distinction between heat and 
salinity surface boundary conditions is central to the existence of multiple thermohaline 
equilibria. It is nonetheless true that ‘mixed’ boundary conditions, as they are 
routinely implemented, distort the physics of the surface exchange processes relevant 
to salinity. The distortion comes because the boundary conditions specify the flux of 
salinity through the sea surface, while in the real ocean salinity is affected by means of 
the freshwater flux due to evaporation and precipitation. Climate models are in 
practice very sensitive to small variations in their structure. It is thus not clear to what 
extent the behaviour present in GCMs represents the distorted physics inherent in such 
‘virtual salt flux’ (VSF) boundary conditions. In a related vein, our understanding of 
the circulation generated by evaporation and precipitation alone in a stratified ocean 
far lags our knowledge of that of due to wind and heating, the latter two having been 
the subject of decades of work. 

Huang (1993) emphasized the proper boundary condition on salinity, pointing out 
that net salt flux vanishes at the surface, and that evaporation and precipitation affect 
the system through the continuity equation. He presented numerical solutions for the 
three-dimensional structure of this ‘ haline ’ circulation, emphasizing the importance of 
applying his salinity boundary condition (which he termed the ‘natural boundary 
condition’ (NBC)). Huang further demonstrated that a system forced by freshwater 
flux alone could oscillate (a concept first proposed by Broecker et al. 1990). In a 
subsequent study, the haline circulation and oscillations were examined over a broad 
parameter range (Huang & Chou 1994). 

1.3. This paper 
The main objective of this paper is to contribute to our conceptual understanding of 
convection in thermohaline systems by means of a relevant analysis of a loop model. 
The particular points we choose to emphasize are of relevance to climate modelling, 
which has a rich tradition in the realm of analytical process models. Density in the loop 
is affected by both temperature and salinity and it is in the implementation of their 
relevant boundary conditions that the main differences between the present work and 
past loop oscillator studies are found. Relaxation boundary conditions are employed 
for heat, as is standard, but both the less widely used NBC and more popular VSF 
boundary conditions on salinity are studied. The main issues we address involve 
illustrating the unique convective behaviour of a stratified fluid subject to the NBC and 
clarifying the effects of diffusion on the thermohaline circulation. 

Accordingly, we find the impact of the NBC on the structure of a convecting loop 
to be profound and to introduce surprising and counter-intuitive tendencies. Further, 
the comparison between these results and those found using VSF conditions suggests 
limitations on the use of the latter. A number of interesting comparisons are also to be 
made between the original Stommel model and the present study. For example, 



156 W. K. Dewar and R.  X. Huang 

parameter combinations arise which are analogous to ad hoc processes in the Stommel 
model. We also find that our model exhibits a self-sustaining saline mode oscillation. 
The above results are supported by both analytical and numerical computation. 

The model equations are described in the next section and a description of the 
numerical methods is given. Analytical and numerical solutions of the salt-only loop 
are discussed in $3, an analysis of the thermohaline loop appears in $4 and the paper 
closes with a discussion of the results and some conclusions. 

2. Equations of motion and computational methods 
Consider a closed circular loop filled with a saline fluid and employ a radial 

coordinate system with azimuthal angle 0 = 0 at the loop bottom (see figure 1). Gravity 
acts in the downward direction. The radius of the closed tube is ro and the inner radius 
of the loop is R,. We assume ro/R,, 4 1 and therefore that many of the fluid's properties 
are well mixed across the tube. 

Fluid density is assumed to be sensitive to both temperature and salinity. Heat is 
exchanged through the skin of the tube according to the flux law: 

(2.1 a) 

where r is a relaxation timescale, T fluid temperature, A ,  heat diffusivity and T a 
reference temperature profile. The tube and the environment also exchange freshwater 
according to 

u[ R, + 2ro] = i?, (2.1 b) 

where u is the fluid radial velocity and Fis a reference freshwater flux profile. (Note that 
we are glossing over latent heat flux effects here; more about this shortly.) 

2.1. Continuity 
The i? profile affects the salinity distribution through the continuity equation by the 
addition of pure water to an otherwise salty fluid. To see this, the continuity equation 

a a 
ar ae -(ru) +- V = 0, 

where u is the radial velocity and V the azimuthal velocity, is integrated radially across 
the tube to yield 

For definiteness, we choose i? = - Ecos (0 - dP), where 8, defines the orientation of the 
freshwater flux field. Thus 

E 
- w = Q+-sin(8-8,), V -- 

RO 2r0 
(2.4) 

where o denotes angular fluid velocity and Q is a function of time only. Thus we see 
that the total azimuthal velocity in this model consists of a non-divergent variable part 
and a spatially fixed, but divergent, part which exists to satisfy the evaporation- 
precipitation boundary condition. This latter contribution to the flow field is due 
entirely to the freshwater flux boundary condition, and has no counterpart in a flow 
subject to virtual salt flux. 
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Precipitation 

Cooling 

e=o 
FIGURE 1.  Loop schematic. We consider a loop filled with salty water. Freshwater and heat are 
exchanged through the loop surface. Gravity acts in the downward direction and the fluid generates 
azimuthal velocity in response to density variations. The forcing fields can have arbitrary orientation : 
those shown employ (a) 01, = 0 and (b) 0, = -n/2, 0, = 4 2 .  

2.2. Salt conservation 
The equation of salt conservation is 

where A, is a coefficient of salt diffusion. Upon an integration in r and use of the 
natural boundary conditions [A, S, - US] = 0 (Huang 1993) at the loop boundaries, we 
obtain 

A ,  
RO 

St + (US), = 7 See. 

Note that ( 2 . 6 ~ )  implies 

( 2 . 6 ~ )  

so that the total salt in the loop remains fixed. Such a constraint is the immediate result 
of the natural boundary conditions. For comparison, the salt conservation equations 
subject to virtual salt flux and relaxation boundary conditions are 

(2.6b) 

( 2 . 6 ~ )  

where r, is a salinity relaxation coefficient, 3 an average salinity and S* a specified 
reference salinity (traditionally chosen to be the observed salinity). Note that the net 
salt in the problem is guaranteed to be a constant if ( 2 . 6 ~ )  is used. If the net freshwater 
flux vanishes, (2.6b) also conserves net salt. No such guarantee exists for ( 2 . 6 ~ ) .  

2.3. Temperature conservation 
Comparable manipulations of the heat equation yield 
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where AT is a coefficient of thermal diffusion and we have assumed the temperature of 
rainfall is identical to the local fluid temperature of the loop (thereby removing heat 
fluxes associated with precipitation). The form of (2.7) is such that both T and T can 
be measured relative to some absolute temperature, provided that the same reference 
is used for both. We adopt this convention (thus T and F can be both positive and 
negative) and for definiteness, will use T =  zcos(0-0,), where OT defines the 
orientation of the reference temperature profile and, like 8,, is arbitrary. 

2.4. Momentum equation 
Dynamical constraints on 52 can be obtained from the azimuthal momentum equation : 

vv uv 1 c a  a cr K + U K + ~ + -  = - -pe+--r -  V + p  I/,,-gp‘sin0, 
r r  r rar  ar 

where cr is viscosity and other notation is standard. This equation is modified by a 
multiplication by r2, a radial integration across the tube and an azimuthal averaging 
to yield 

(2 * 9)  

where ( . ) = (1 /2x)  denotes an averaging operator. To obtain (2.9), we have 
assumed that precipitation possesses an azimuthal angular momentum of Q (so that 
momentum fluxes due to rainfall vanish) and that frictional interactions with the tube 
walls can be written as a drag, i.e. 

52, = -vQ-g(p’sin0)/R0, 

( T V ,  = -VV/R,. (2.10) 

The equation set (216a, b or c)  and (2.9) are closed by the inclusion of the linear 
equation of state: 

p’ = PS-aT. (2.1 1 )  

2.5. Non-dimensionalization 
Equation (2.6) guarantees that the loop contains a fixed amount of salt, from which we 
obtain the salinity scale S = (S). This, in turn, implies a reduced gravity magnitude of 
gPS, which in a loop of radius R, results in an overturning timescale of [Ro/g/3s]1/2 = 7,. 

Scaling both w and time by 70,  salinity by S and temperature by eventually leads 
to the non-dimensional set 

S, + [(Q + h sin (8 - 0,)) Sle = K~ See, (2.12a) 

(2.12b) 

(2 .124 

+ (52 + hsin (0- 8,)) & = - y(T-A cos (8-0,)) + K~ qe, 
1 
R Q, + aQ = - (Ssin 8 )  +- (Tsin 8) ,  

where 

Identifying T, as a ‘flushing’ timescale, h represents the ratio of 7, to a tube filling time 
based on precipitation, a the ratio of 70 to viscous decay time, K~ and K~ the ratio of 
7, to diffusion times for salt and heat, respectively, and y the ratio of 7, to the 
temperature relaxation timescale. The density ratio parameter R measures the relative 
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importance of salt to heat in determining fluid density; an analogous parameter 'R' 
appears in Stommel(l961). Finally, the factor of A in front of the thermal relaxation 
profile in (2.12b) takes the value 1/2 in order to ensure that the total temperature range 
corresponds to T,. 

Six non-dimensional parameters a, K ~ ,  K ~ ,  A, y, and R appear in the above equations. 
Since we are in the early stage of learning about the dynamics of the loop oscillator 
subject to NBC, we choose to examine the weakly forced, weakly viscous limit, i.e. 
a x A < O(1). Such a parameter ordering is chosen for convenience, and there is clearly 
some ambiguity in the selection of parameter values, in recognition of the idealized 
nature of our model and our interest in the climate. While the above regime seems a 
reasonable one to study, and certainly pertinent to climate issues, it is almost certainly 
not the only one. However, a more comprehensive exploration of the parameter space 
is left for further study. 

The parameters K~ and K~ will take a wider range of values, from O( 1) to values much 
less than O(a, A). In terms of our climate motivation, the above (particularly the weak 
mixing limit) represents a sensible regime, and corresponds to water vapour fluxes that 
are small compared to oceanic mass fluxes. The latter is consistent with the argument 
put forward in Broecker, Peteet & Rind (1985) which emphasizes the climatic 
significance of O( 1 Sv) atmospheric water vapour fluxes (compared to a thermohaline 
overturning cell of O(20 Sv)). In contrast, boundary layer meteorologists emphasize 
the strong negative feedbacks between the atmosphere and the ocean which tend to 
remove sea surface temperature anomalies. This translates in numerical GCMs to 
fairly short relaxation timescales and hence a considerable boundary condition control 
of temperature. This will be reflected in our loop model studies by choosing a larger 
value for y than for a, A, K~ or K ~ .  Finally, with a x 2 x lop4 OC-l, /3 x 8 x 
(practical salinity units)-', T,  z 30 "C and S x 35 practical salinity units, R x 4. 

2.6. Numerical method 
The focus of the next two sections will be the solutions of (2.12), and both analytical 
and numerical approaches will be discussed. We therefore briefly indicate our 
numerical methods here. Of principal importance in their selection is the fact that the 
temperature and salinity fields are periodic, which leads naturally to the use of spectral 
methods. Another advantage of this approach is that the temperature and salinity 
torques appearing in the momentum equation occur naturally as the lowest mode of 
the temperature and salinity Fourier expansion. Most of the numerical results 
presented in the next section used 64 azimuthal modes; tests with 128 and 256 modes 
indicated that our main results are not sensitive to resolution. A fourth-order 
Runge-Kutta time-stepping procedure was used to compute the evolution of the 
spectral coefficients. 

3. A salt-only model 
We first consider a special case of (2.12), corresponding to a loop filled with salty 

water forced only by a freshwater flux. The equations governing this system are 
obtained from the above by ignoring T. This corresponds to y = 0, which under 
normal evolution will ultimately yield T = 0. Thus (2.12 c) becomes 

51, = -aO-(Ssine). 
It is perhaps not surprising that the nature of the stationary solutions depends 

critically on the relative importance of the parameters a, h and K (here K = K~ for 
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convenience). When K = 0, it is straightforward to find the steady solution of (2.12); 
i.e. for arbitrary a and A 

where 

[ 1 - (A /Q)2 ]”2  

1 + (h /Q)  sin 0’ 
S =  

is the mean angular velocity. 
It is, however, much more interesting to consider non-zero K because diffusion exists 

in reality and is also necessary for numerical stability. In addition, we will show that 
small, but non-zero, K gives rise to very interesting limit-cycle behaviour. 

We have also set O p  = 0, yielding a loop which is evaporated from above and 
precipitated on from below. In some sense, this situation is the analogue for salty fluids 
of the classical thermal convection problem. As stated above, we consider here small 
a and A, and for analytical convenience will also assume a - h < 1. When K is non- 
zero, the solutions for Q and S can be simply obtained by employing a perturbation 
approach which makes use of these parametric restrictions. Indeed, a convenient 
classification of this form of (2.12) is found if we consider K larger than, comparable 
to and smaller than a and A, respectively. We shall now describe this classification. 

3.1. The diflusive limit (a, h < K < O(1)) 
Neglecting time derivatives in (2.12~) and expanding in A yields at lowest order 

where the subscript denotes the order of the expansion. The solution of (3.1) subject 
to periodicity and the normalization condition is 

so= 1. (3.2) 
Note that this solution is consistent with the steady lowest-order form of (2.12~). 

The next order in A yields 

a, S,, = - cos 0 + KS,,,. (3.3) 
The solution of this equation for S,, subject to periodicity and normalization, is simply 

Inserting (3.4) in (2.12~) yields three solutions for Q,, i.e. 

Thus for K~ > A/2a the only physically acceptable solution is that the ring is at rest, 

A 
i.e. Q = 0. The salinity profile 

s= i--cose 
K 

is simply left-right symmetric with respect to the forcing and with a maximum at 
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FIGURE 2. Diffusively dominated solutions for a = 0.0055, A = 0.015 and K = 1.4 (solid line), K = 1.15 
(long dashed line) and K = 0.5 (short dashed line). The associated Q-values were determined 
numerically to be 0, 0.2 and 1.0 respectively. 

0 = R, as indicated by the solid curve in figure 2. The secondary circulations associated 
with the freshwater flux profile (represented in (2.12a) by the h sin 0 term) advect the 
mass from source to sink. The salinity variations of O(A) are set up by a balance between 
the mass flux convergence/divergence and salt diffusion. 

The situation changes for K smaller than the critical parameter value K, = (A/2c~)l'~; 
namely, the possibility of a non-zero circulation arises in which the salinity maximum 
is located at 

The nature of the solution in (3.6) is that, as K decreases, the salinity maximum 
moves away from t9 = R toward either B = :R or in, depending on whether 52, is positive 
or negative, respectively. 

It is a simple matter to demonstrate that the stagnant solution is stable for K > K, 

(some of the mathematical steps are included in the next section). For K < K,, the 
solution with circulation (52, + 0) is stable, but the solution with 52, = 0 is unstable. 
Such behaviour is identified in dynamical systems theory as a pitchfork bifurcation (see 
figure 3). 

We have tested the validity of these solutions using the above-mentioned numerical 
code; salinity profiles appear in figure 2. The parameter values used here were a = 
0.0055 and h = 0.015, yielding a critical value for K of K, x 1.25. A K-value of 1.4 was 
used to produce the solid curve and a value of 1.15 was used to produce the long- 
dashed curve in figure 2. The numerically generated Q-values consistent with these 
solutions were Q < and 52 = 0.202, respectively. These values agree with the 
above formulae, and document the above bifurcation. Also shown in figure 2 is a short- 
dashed curve representing the solution with K = 0.5. This curve demonstrates the 
rotation of the steady salinity profile with decreasing K inherent in (3.6). The location 
of the salinity maximum predicted by (3.6) is in excellent agreement with the numerical 
result. 
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FIGURE 3. The loop oscillator bifurcation map for a = 0.0055 and A = 0.015, and with variable K :  

non-dimensional diffusivity K versus the location in degrees of the salinity maximum. The solid lines 
indicate stable solutions and the dashed curves indicate unstable solutions. 

3.2. Stability analysis in the limit of weak diyusion (K ,  a, h 4 O(1)) 
As K decreases to small values, the salinity profile and angular velocity 0, tend to the 
approximate values : 

S = 1 - @/ao) sin 8, (3.7) 
a, = +(h/2a)"2. (3.8) 

Small perturbations to this state are governed by the linearized form of (2.12) where 
the basic state is as defined in (3.7). If we further assume that the salinity perturbation 
takes the form 

S' = pc( t )  cos 0 +,us( t )  sin 9, 

( 3 . 9 4  
(3.9b) 
(3 .94  

where the overdot implies a time derivative and the prime a perturbation. 
The stability of the perturbation is judged in the usual way; namely, normal mode 

solutions in the form q = aq are sought. The growth rates, u, are governed by the cubic 
equation 

(3.10) 

Writing a = hoi and K = hk, we use a perturbation method to find the solution for 
CT = c;-, vn An. The three solutions for a at lowest order are 

go = 0, f i (h /2~) ' /~ .  (3.11) 

= - 2oi-2 < 0; thus, this root is stable. For the 

(3.12) 

h h 
2a (a + K)3 + (a  - K )  (a + K)2 + - (a + K )  + (2a - K )  = 0. 

The next correction for a, = 0 is 
imaginary roots, however, we obtain at O(h), a1 = g-k; thus, 

v = + i(h/2a)'/' + ($a - K )  + O(h'). 
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FIGURE 4. Temporal evolution of the salinity profile for a = 0.0055, A = 0.015 and K = 0.002, close 
to the critical value defined by (3.12). Maximum salinity values are plotted as a function of time. The 
system was started from the inviscid equilibrium state. 

The above demonstrates that the steady solution in (3.7) and (3.8) represents either 
an unstable or a stable centre, depending upon whether :a - K is positive or negative, 
respectively. This analysis completes the bifurcation map shown in figure 3. The result 
in (3.12) is reassuring in that it recognizes K as a stabilizing influence, but might be 
surprising in its apparent recognition of the viscosity a as destabilizing. In fact, it is the 
value of a relative to K that matters, with the idea that low diffusivity is incapable of 
resisting the transition of the system from diffusively dominated behaviour, like that 
described above, to a state only weakly affected by diffusion. 

Two other important points emerge from (3.12). The first is that the nature of the 
salinity perturbations is to be swept around the loop by the existing mean-state flow. 
This is evidenced by the appearance of is2, in (3.12) (see (3.8) for the definition of Qo). 
The second point is that the decay (or growth) time of the perturbations (G x 
(&z-~)-') is entirely independent of the boundary forcing (represented by A)  and is 
sensitive only to the internal parameters of the system (a and K) .  The only effect of the 
forcing is to set the advection scale. This differs greatly from the comparable stability 
characteristics appropriate to relaxation boundary conditions which, in turn, predict 
decay scales dependent on the boundary conditions (G = l/T, where r is the 
relaxation parameter). 

We have tested the above stability analysis using our numerical model. The model 
can be initiated using an arbitrary profile, an initial state of rest or the stationary 
inviscid solution (3.7). We present salinity profiles from two experiments, both with 
parameters a = 0.0055, A = 0.015, but differing in their values of K, i.e. K = 0.003 and 
0.002 (see figures 4 and 5).  In the first case with K = 0.003, the system is just above its 
critical value defined by K, = +a = 0.00275. Accordingly, we expect the system to attain 
the stable state defined by (3.7) and (3.8). The computed angular velocity for this 
experiment (Q = 1.168) is in excellent agreement with the theoretically expected value, 
and the salinity profile is roughly a simple cosine profile with the salinity extrema 
located at 8, = $t and +K (see figure 5 4 .  This experiment was started from rest and ran 
for 1000 time units. Ten profiles are shown, each separated by 100 time units. On the 
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FIGURE 5. Salinity profiles of weakly diffusive solutions for a = 0.0055, h = 0.015, and (a) K = 0.003, 
and (b) K = 0.002. Note the great difference in salinity structures here, consistent with the 
expectations based on our stability analysis. The profiles in (a) indicate the system relaxation toward 
the steady profile. Ten profiles are plotted, each separated by 100 time units, the smallest amplitude 
being the earliest and the largest amplitude the final state. The experiment used a flat initial profile. 
The protiles in (b) are snapshots of a propagating pattern at t = 10000 (the solid line), t = 14000 (thin 
dotted curve), t = 16000 (heavy dotted curve), r = 18000 (dot-dashed curve), and t = 20000 (solid 
curve). 

other hand, the spin-up process of the model takes much longer for the second case 
with K = 0.002. It takes 20000 time units for this experiment, which began from the 
inviscid state defined by (3.7), to equilibrate, as shown in figure 4. For the first 10000 
units of time, the salinity profile is almost indistinguishable from the solution in figure 
5(a), although the cosine profile begins a slow propagation (compare the waves in 
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figure 5 6). Thereafter, the profile begins to change dramatically, as is seen in the large 
values of the salinity maximum found near time T = 17 500, and in the later profiles of 
figure 5 (b). 

Several points need to be mentioned about figure 5. First, the final salinity profile in 
figure 5(a) is stationary, i.e. the system evolution from an arbitrary initial state is to 
approach the predicted profile (3.8). On the other hand, the system approaches a limit 
cycle for the second case, i.e. the profiles are in fact propagating. Secondly, there is 
clearly a major difference between results in figures 5(a) and 5(b), which in turn is 
consistent with the predictions of our stability analysis and generalizes the results 
beyond the special perturbations considered in (3.9). In combination with the first 
point, we identify the transition defined by (3.12) as a Hopf bifurcation. Finally, these 
profiles demonstrate that the salinity evolves into a spike-like function, indicative of a 
profound tendency found in this system to concentrate salt in one moving location. 
This appears in figure 5(b) in the amplitude of the salinity anomaly. The total 
maximum to minimum change obtains a value of 3.75. This is roughly 300 times the 
net change in salinity observed in the profile in figure 5 (a). The difference between these 
results is all the more remarkable given that these experiments differ in one of the 
parameters by only 1 x such that the parameter straddles the Hopf bifurcation. 

The minimum S-value in the experiment in figure 5(b) obtains a value of 0.03, 
representing relatively fresh water, and occupies a significant fraction of the loop. The 
tendency to produce a loop of nearly fresh water with all the salt concentrated in single 
intense plug is even more pronounced for K-values slightly further from the Hopf 
bifurcation. We now proceed to consider the dynamics of such solutions. 

3.3. The non-diffwive limit - salt spike solutions 
We propose a test solution for the salinity profile in the form of a travelling delta 
function : 

s = 2xqe - e,(t)), (3.13) 
where we have employed normalization to set the spike amplitude and 6 denotes the 
usual Dirac delta function. The quantity 0, represents the azimuthal location of the 
spike and is potentially a function of time. Substituting (3.13) into (2.12) and neglecting 
K yields the coupled set of ordinary differential equations 

- 25~8'0, + (a + h sin 0)  2niY = - 27th cos 08, (3.14~) 
Q = -aQ-sine,, (3.146) 

where 8' denotes the derivative of the delta function. If (3.14~) is multiplied by any 
periodic function of 0 and integrated around the loop, it yields 

So = Q+hsin@,. (3.14~) 

Again, we are interested in small h and a, so we consider an expansion in h with 

So = o,, ho = -sinO,, (3.15a, b) 

where the subscript now refers to the order of the expansion. Equation (3.15~) shows 
that the spike follows the flow at leading order (this is consistent with the stability 
analysis discussed in the previous section). Equations (3.15) eventually yield a first 
integral, i.e. 

fe; - cos 8, = c, (3.16) 

We now consider the solutions of the set (3.14b, c). 

a/h = oi = O(1). The lowest-order expansion yields 
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e 
FIGURE 6 .  An example of a spike solution for a = 0.005, A = 0.015 and K = 0.001. The maximum S- 
values are 6.0 and the minimum values are less than 0.001. Freshwater occupies most of the loop. 

where the constant C is as yet unspecified. The above is the same equation as that of 
a nonlinear pendulum and its solution for 8, can in principle be written in terms of 
elliptic functions with free parameter C. 

Forcing and dissipation appear in the next order of the expansion, which yields 

b, = a, + sin so, 8, = - o i ~ ,  - cos eo 8,. (3.17u, b) 

The above can be combined into 

8, + cos 8, 8, = - ois2, + cos 8, 8. (3.18) 

Some manipulation demonstrates that 8, is a solution of the adjoint operator of the 
left-hand side of (3.18). If attention is restricted to periodic solutions, one obtains the 
solvability condition 

oi JOT 8: dt = I,* b: cos 8, dt, (3.19) 

where T is the period of the oscillation, which, given (3.16), relates the unknown C to 
the system parameter ai. 

Equation (3.19) can in principle be applied for any Oi. It is clear from (3.16), however, 
that a critical value for C occurs when C = 1. This corresponds to the state where 
b, = 0 when 8, = 7c or, recalling the pendulum analogy, the critical state dividing back- 
and-forth oscillations from those which complete full circuits about the loop centre. It 
is possible to evaluate (3.19) analytically for this case with the result that the critical 
& at C = 1 is oi = 1/3. For oi < 1/3, the spike circulates the loop completely; for & > 
1/3, the spike oscillates like a normal pendulum. It will be shown shortly that Oi = 1/3 
represents a sort of period-doubling bifurcation. 

It has been a remarkable result of our work that the spike solutions are realized in 
our numerical model. One example occurred in figure 5(6); another more extreme 
example occurs in figure 6. Here, a = 0.005, A = 0.015 (di  = 1/3) and K = 0.001. The 
S-values in the spike are O(6.0) and those in the great freshwater reservoir are 



Fluidflow in loops driven by freshwater and heatyuxes 167 

FIGURE 7. Temporal evolution of mean angular velocity for A = 0.015, K = 0.0001 and 
(a) a = 0.0055, (b) a = 0.0045. 

numerically less than lo-’. Further, the structure of the salinity profile is that of a very 
narrow almost Gaussian-like profile. We have demonstrated in a series of experiments 
that the widths and amplitude of this maximum are controlled by the employed value 
of K. This appears if figures 5(b) and 6 are compared. 

The temporal evolution of the angular velocity for parameter sets which straddle the 
period-doubling bifurcation has been determined by using our numerical model and 
their relative behaviours have been confirmed. Examples are shown in figures 7 and 8, 
both of which employ A = 0.015, while K = 0.0001 in figure 7 and a = 0.0055 and 
0.0045 in (a) and (b), respectively. Both experiments were begun from a state of rest. 
In figure 7(a), the early behaviour of 51 is to oscillate with purely positive values and 
with an increasing amplitude. Around T = 680, 51 passes through zero, and 
subsequently obtains values of both signs during each cycle. Note the approximate 
period doubling associated with the transition to pendulum-like behaviour at T = 680 
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FIGURE 8. Phase-space diagrams for (a) a/h  = 0.34 and (b)  a/h  = 0.32, and K = 0.001. Note the 
butterfly structure in (a) consistent with a pendulum-like oscillation. The plot in (b), in contrast, is 
consistent with a one-signed value for Q. 
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FIGURE 9. Phase relation between the mean angular velocity of the fluid (dashed curve) and 

angular velocity of the salinity maximum (solid curve) For a = 0.0045, h = 0.015, and K = 0.0001. 

(the periods were numerically determined to be about 11 for T c 680 and about 19 for 
T > 680). The latter part of the diagram corresponds to equilibrium behaviour for 
these settings. A different view of this pendulum equilibrium is given in figure 8(u), 
where a phase-space plot of 6, and sine, (i.e. angular velocity versus ‘torque’) is 
presented. Here, & = 0.34. Note the butterfly shape in figure 8(a), with both positive 
and negative values of 6,. 

The temporal evolution of Q for & c 1/3 is shown in figure 7(b).  Again, the early 
behaviour of D is to oscillate with positive values of an increasing amplitude, but the 
later behaviour indicates an asymptotic approach to an equilibrium with only positive 
D. The phase-space character of this equilibrium is shown in figure 8(b), (& = 0.32) 
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where it can be seen that the butterfly structure has been replaced by an ovular curve 
involving only positive Q. This state corresponds to the continuous looping of the salt 
spike about the tube. Finally, visually comparing the equilibrated parts of figures 7 (a) 
and 7 (b)  demonstrates the period-doubling phenomenon alluded to earlier. The reason 
for this is clearly that the pendulum-like oscillation in figure 7 (a)  has to transit the tube 
twice to complete a cycle, while the state in figure 7 ( b )  must transit only once. 

The physics maintaining the spike involves the nonlinear coupling of the advection 
of salt, whose rate is in turn set by the salt distribution and the freshwater flux profile. 
The latter generates a stationary secondary velocity field (see (2.4)). As shown in figure 
9 water is moving counterclockwise, so that when the salinity maximum is on the left 
half of the loop, the gravitational torque accelerates the mean flow. The heavy saline 
blob thus moves rapidly through the precipitating bottom half, and hence does not 
experience much effect of the divergent secondary velocities. In contrast, the heavy 
blob slows as it nears the loop top and so experiences the evaporation-driven 
convergence there for a relatively long time. Note that although the mean angular 
velocity is symmetric with respect to 6 = 0 and x ,  the angular velocity of the salinity 
maximum is not. In fact, the salinity maximum moves slower than the mean fluid on 
the left branch of the loop, but it moves faster than the fluid on the right branch of the 
loop. These secondary circulations thus cause a concentration of the salinity profile; on 
the next oscillation, this tendency is reinforced. The only persistent opposition to this 
sharpening comes from diffusion which, being weak, yields very abrupt, spike-like 
profiles. The above-mentioned mechanics for the amplification of salinity perturbations 
is similar to those promoting the growth of thermal perturbations discussed by 
Welander (19671, but is slightly different from the positive feedback mechanism of a 
salinity anomaly in a thermally dominated meridional circulation discussed by Walin 
(1985). 

3.4. The relation of the oscillatory period to the forcing 
The results of Huang & Chou (1994) have motivated us to examine the dependence of 
limit-cycle periods on forcing. As discussed in the stability calculations of the previous 
sections, at leading order perturbations are simply advected ; thus, the salinity 
oscillation period is determined by the mean current. According to (3.1 l), the period 
is thus proportional to (h/2a)1/2.  In dimensional units, this gives rise to a square-root 
dependence of the period on the precipitation/evaporation amplitude, i.e. 

(3.20) 

This is similar to the scaling analysis of Huang & Chou (1994). One may also analyse 
the spike solutions analytically in the limit of C B 1. There it may be demonstrated that 
the oscillation period behaves as T x All2, again a square-root dependence. In between, 
i.e. for small K and Oi < 1/3, the frequency is most conveniently determined by 
numerical analysis. We have conducted experiments for a = 0.002, K = 0.0002 and 
several A-values and the results are plotted in figure 10. The employed range of A was 
from very near to the period-doubling boundary (- 0.006) to well beyond that value. 
While the overall dependence is not inconsistent with a square-root behaviour, it is easy 
to believe that the graph could be interpreted as linear over much of this range. This 
is interesting because such a linear behaviour was reported by Huang & Chou (1994). 
We have also considered A-values much larger than those shown here (up to h = 0.015) 
and the square-root dependence eventually and unambiguously appears. 
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FIGURE 10. The dependence of oscillation period on forcing. In these experiments, 01 = 0.002, and 
K = 0.0002. The forcing parameter h varies from 0.0059 to 0.007. The theoretically predicted 
bifurcation value is A = 0.006; numerically it was found to be closer to 0.0058. 

3.5.  System behaviour with other boundary conditions 
Given the sensitivity of oceanic GCMs to details of the boundary conditions and 
parameter settings, we are also interested in studying the impact of various boundary 
formulations on system behaviour. To this end, we have considered the effects of 
relaxation and virtual salt flux boundary conditions on the loop oscillator. Of course, 
natural boundary conditions are the ‘correct’ ones, and other conditions will be judged 
against them. 

Relaxation conditions 
Consider first the case of relaxation conditions, where for consistency the reference 

salinity S* in (2.12b) has been chosen as the weakly diffusive stationary profile 
obtained using natural boundary conditions, i.e. 

(3.21) 

Our analysis here somewhat mirrors the classical loop model studies of thermal 
convection subject to temperature relaxation (Keller 1966 ; Welander 1967), although, 
they employed relaxation profiles proportional to cos 8. Our profile is at right angles 
to this, and hence our results differ from those in past studies. The stationary solution 
corresponding to (3.2 1 )  is 

(3.22) 

It is readily seen that when a strong relaxation condition applies, i.e. y b 52, K, this 
solution approaches the reference salinity profile (3.21); otherwise, there is always a 
difference between the reference salinity and the real salinity. 

By repeating the analysis presented above for the case of natural boundary 
conditions, one can show that for a given sign of Q,, the system has one stationary 
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solution, in which the sign of 52 is the same as 52,; however, their values are different. 
The stability analysis gives rise to the lowest-order growth rate of the perturbation as 

u = -7-K, -a. (3.23) 

There are two important points. First, the solution is stable, i.e. any perturbation 
would decay, as expected when the relaxation condition is imposed. Secondly, 
perturbations are not advected by the fluid. The non-advective nature of the 
perturbations is probably one of the most fundamental differences between models 
forced by relaxation conditions and natural boundary conditions. 

Since a model with a strong relaxation condition on salinity has its limitations, it is 
interesting to examine the behaviour of the present system under a weak relaxation 
condition. Here we restrict attention to the parameter regime a, A, y 4 1, where y = 
TT measures non-dimensional relaxation time. In view of most model applications, we 
further order these parameters as a - h Q y Q 1. 

To leading order, the mean angular velocity is 
52 = y2/352;/3. (3.24) 

Recall that the natural boundary conditions give a loop fluid velocity of 52,. Clearly, 
the flow subject to relaxation conditions is very sensitive to y, and tends to be small 
relative to the desired 52,. 

The corresponding stationary solution (3.22) is reduced to 
S = 1 - 2ay2I3 8;13 sin e + 2 d ; I 3  y1I3 cos e, (3.25) 

where it is clear that the last term is the leading-order correction. Regardless of the 
value of y, S does not converge to S*, a somewhat surprising and counter-intuitive 
result. 

The equivalent 'salt flux' associated with relaxation boundary conditions is to 
leading order proportional to S* in this problem, i.e. 

(3.26) 

where it is seen that the latter term dominates. If this is compared with the virtual salt 
flux formulation, (2.6b), it is seen to be 90" out of phase with that flux. 

Finally, the growth rate of perturbations to the steady solutions turns out to be 
u = +i52-y++(y2,a,A), (3.27) 

demonstrating a decay rate controlled by the relaxation parameter. The imaginary part 
shows that, while decaying, the perturbations move with the mean flow. As one would 
expect, solutions under weak relaxation conditions cannot match the reference salinity. 
In fact, most quantities, such as the mean angular velocity, the virtual freshwater flux 
diagnosed from the model, are distorted. 

The above results represent quantitative differences between relaxation and natural 
boundary condition behaviour. It is perhaps equally important that qualitatively the 
relaxation conditions prevent spike formation entirely for the reason that they restrict 
the salinity profile to have a shape like that of the imposed boundary conditions. In 
some sense, this implies a rather severe departure from physical behaviour. 

Virtual salt jlux (VSF) conditions 
The loop oscillator salt equation subject to the usual VSF condition is (2.6b). This 

equation, while standard in form, employs in fact a modified version of the true 
boundary condition in that S appears rather than S. Local flux is thus proportional to 
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globally averaged salinity, rather than local salinity. This boundary condition 
employing S is now widely accepted because it ensures global conservation of salt and 
in practice prevents the occurrence of the so-called ‘salt explosion’, in which net global 
and local salt values grow without bound. 

Regarding steady solutions, VSF conditions perform in a much more acceptable 
fashion than relaxation conditions. Namely, the steady profiles and velocities consistent 
with small a and h are good approximations to those for natural boundary conditions. 
The stability properties for the steady solutions are also comparable, with a stability 
boundary characteristic of a Hopf bifurcation occurring when :a - K changes sign. 

The same cannot be said for the limit-cycle solutions of (2.6b) when compared to 
those generated by natural boundary conditions. The VSF form of the loop oscillator 
lends itself readily to analytical analysis; the details appear in Appendix A and the 
methods are similar to those appearing earlier. 

The principal differences remarked on here are both qualitative and quantitative. 
First, VSF conditions prevent spike formation; rather, salinity profiles are constrained 
to be low mode in structure. The reasons for this are related to the elimination of some 
of the nonlinear terms in the salt equation associated with natural boundary 
conditions. The convergence mechanisms responsible for profile sharpening in 
particular are removed. Secondly, we have been unable to locate any parameter 
settings which generate a complete loop oscillation for VSF. Rather, all limit-cycle 
oscillations are of the regular pendulum type, like that in figure 8(a). We now have 
considerable numerical evidence in support of this result although the reasons for it are 
unclear. At the very least, it can be said that the nature of the loop oscillator variability 
is very sensitive in unphysical ways to VSF conditions. Thirdly, VSF conditions in the 
loop oscillator can generally lead to the very unphysical generation of negative 
salinities in their limit-cycle solutions. The reason for this is the significant quantitative 
error in the flux specification associated with the replacement of the local salinity value 
by a global average salinity in the boundary condition. As a result, flux is grossly 
overestimated for low salinities and underestimated for high salinities. There is no 
guarantee that low salinity values will not be pushed to negative values. Natural 
boundary conditions, in contrast, have an effective flux proportional to local salinity; 
therefore, low salinities are associated with ever-decreasing fluxes. Salinity always 
remains positive. We should also remark that in experiments with the ‘true’ specification 
of virtual salt flux, in which s i n  ( 2 . 6 ~ )  is replaced by S, we have been unable to obtain 
physical behaviour. Rather, a loop oscillator version of the salt explosion occurs 
because salt conservation is no longer guaranteed. 

4. A thermohaline loop model 
We now move on to consider convection in a fluid whose density is set by both heat 

and salinity. Again a central motivation in our analysis is to examine the impact of the 
natural boundary conditions in this system; however, we also feel that models like this 
are of relevance to climate. The history of climate theory includes notable contributions 
from the study of simple process models, many of which are of the box model variety 
alluded to earlier. While the present loop model represents a step forward in terms of 
complexity, we are nonetheless motivated to draw parallels between our results and 
those of the original box model of Stommel, with a view to clarifying box model 
parameterizations and emphasizing new results. A brief review of Stommel’s results 
will serve to set the stage. 

Stommel’s model was of two boxes connected to each other by pipes, and to heat and 
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FIGURE 11. Stommel box model schematic. Two neighbouring well-rnixed boxes exchange fluid by 
means of pipes. This advective exchange rate is proportional to the relative densities of the boxes. In 
addition, both boxes exchange heat and salt with infinite reservoirs at Tand S according to relaxation 
laws. Gravity acts downward. Note that the forcing fields in figure 1 are configured to resemble the 
reservoir distribution here. The fluid is heated on the right, so a positive circulation corresponds to 
hot fluid rising and is referred to as a thermally direct cell. A high-salt reservoir also sits on the right 
(corresponding to an evaporation zone in figure 1). Hence, a negative circulation corresponds to salty 
fluid sinking and will be referred to as a saline mode. 

salinity reservoirs by conductive interfaces (see figure 11). The fluid exchange rate 
between the two well-mixed boxes was proportional to the density difference between 
them. Property exchange between the reservoirs and the fluid occurred by relaxation, 
with the salinity timescale assumed much longer than the heat timescale. The equations 
governing this system can be effectively obtained from (2.12) by finite differencing the 
advective derivatives, suppressing momentum acceleration, suppressing A, and (most 
importantly) suppressing heat and salinity diffusion. It is also necessary to add a 
relaxation term, ys(S-S,) ,  to the salinity equation (2.6) and to assume antisymmetric 
solutions. Stommel computed the steady solutions of his system which he was able to 
reduce to a nonlinear equation with the flux between boxes as the independent variable. 
This equation in our notation is 

1 1 

(I  +Sldl) R - m ’  
A 6  = 

where A = a?, 6 = Q/y ,  S represents the ratio of thermal relaxation time to our ad hoc 
salinity relaxation time and R here is given by @/aT. This equation Stommel solved 
graphically and a synopsis is given in figure 12. The y-axis is gravitational to_rque T 

(essentially the right-hand side of (4. l)), which is plotted as a function of flux (52). The 
two curves in figure 12(a) are of net gravitational torque for 6 = 1 and 6 = 1/6, i.e. for 
identical heat and salinity relaxation times and for salinity relaxation time long 
compared to heat relaxation time ( R  = 2 in both). The straight line represents friction 
(i.e. the left-hand side of (4.1)) for a given A and the intersection of the frictional and 
gravitational curves constitutes a solution of (4.1). The three curves in figure 12(b) are 
plots of torque for three different values of R, namely 2, 1, and 0.5 (8 = 1/6 in all three). 
The first R corresponds to the value discussed by Stommel and we include the others 
for completeness. The straight line again represents friction. 

It is clear from figure 12(a) that different relaxation times raise the possibility of 
multiple equilibria. The convention here is that positive 6 denotes a thermally direct 
mode (i.e. hot water rising), so that if 6 < 1 thermally direct and saline direct (salty 
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water sinking) cells potentially can exist. Whether they in fact occur clearly depends on 
A : small A (weak friction) increases the likelihood of multiple solutions. On the other 
hand, if S = 1, the system can only exhibit a saline mode (recall that R = 2 in these 
plots). Figure 12(b) demonstrates that the nature of the equilibria also depend on R. 
Analysis demonstrates that multiple equilibria exist if 1/S > R 2 1. One of the 
solutions for R = 1 corresponds to h = 0 and the other to a thermally direct mode. The 
stagnant solution is a disguised saline mode; the lack of motion allows the slow salinity 
effects to control density. Finally, for R < 1, only thermal modes exist while for R > 
1 /S, only saline modes exist. The physical mechanisms responsible for this behaviour 
are clearly illustrated in Appendix B, where a modified box model, based on freshwater 
flux rather than salinity relaxation or virtual salt flux, is discussed. This model first 
appeared in Huang, Luyten & Stommel (1992). 

This review, among other things, emphasizes two novel effects that the loop 
oscillator can include in a simple thermohaline model, namely diffusion and explicit 
freshwater flux. Note that nothing like K~ or K~ appears in the Stommel model. (Thual 
& McWilliams 1992 discuss the inclusion of a diffusion parameterization in a box 

r l U U K E  I L .  D U A  IIIUUGI SUIULIU115. IICL ~ I d V l L d L l U I I d l  LUIqUG ( r )  dllU l l lLLlUIl  L U I ~ U G  VGISUS allgulcll 
velocity a. Solutions are found at  the intersection of the frictional line and the solid gravitational 
curves. The curves in (a) are for identical relaxation times (6 = 1, dotted) and slow salt relaxation 
(6 = 1/6, solid); R = 2 in both. Multiple equilibria occur for S < 1. In (b) S = 1/6, but R = 2 (solid), 
1 (dashed) and 0.5 (dot-dashed). Multiple equilibria exist. but their nature depends upon the value 
of R relative to 1. 
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model, but find it does not importantly influence their results.) Indeed, it might even 
be argued that diffusive exchanges are inappropriately represented in a model 
consisting of two perfectly mixed, but separated vessels. With regard to freshwater flux, 
nothing like a salinity relaxation parameter occurs in the loop oscillator, and we 
instead must appeal to the explicit representation of surface exchange and model 
physics to internally determine the timescales of salinity response. 

4.1. Steady solutions 
Bearing the above points in mind, we now consider analytical solutions for the loop 
oscillator. We fix the value of 8, at -in and eT at fx, giving the forcing fields shown 
in figure 1. This aligns the regions of strongest heating with those of evaporation, which 
is intuitively plausible. This restriction is of course not necessary, but in some sense 
results in the closest analogy between the loop oscillator and the classical box model 
and facilitates comparisons. 

We first consider steady solutions of (2.12). The exact solution of (2.124 is obtained 
by first integrating once in 8, i.e. 

(4.2) 
The constant C can be determined as a solvability condition by applying the boundary 
condition of periodicity; thus, 

(a+ h COS 6) s = K s  SO+ C.  

c= ((Q+Acose)s). (4.3) 
Equation (4.2) is a first-order equation and can be solved by use of an integrating 
factor. The exact form for S is thus 

J o  

where S(0) is currently unknown and Cis set by (4.3). Using (4.4) to evaluate (4.3) gives 
the solution for salinity as 

where S(0) is determined by the normalization constraint (S) = 1. Equation (4.5) 
applies for any Q. The approximate form of (4.5), valid for small A / K ~ ,  is obtained by 
expanding the appropriate exponentials in Taylor series : 

(4.6) 

Since we are considering the case where y >> A, K ~ ,  a perturbation expansion in h is 
used to solve (2.12b). The result is 

Using (4.6) and (4.7) to evaluate the gravitational torque in (2.12~) gives the equation 

from which Q can be numerically computed as a function of A, K ~ ,  K?, a: and y. 
However, it turns out to be particularly illuminating to solve (4.8) graphically. 
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FIGURE 13. Loop model solutions : gravitational and frictional torques versus angular velocity. 
Frictional torque is represented by the straight line and gravitational torque by the curves. The three 
curves denote p = 2, 1 and 0.5. The slope of the frictional torque is a = 0.05. The graph is similar to 
that in figure 12(b). 

To facilitate this, we define an effective density ratio 

W Y  + 4 
KS Y A  

,u= 

and an effective relaxation timescale ratio 

d = - .  KS 
Y + K T  

Consider now the behaviour of the right-hand side 
For Q = 0, we have 

(4.9) 

h 1-p 

2% ,u 
RHS (Sz = 0) = --, 

(4.10) 

RHS) of (4.8) as a function of i2. 

while for large Q(Sz % y, K ~ ,  K ~ ) ,  

(4.1 1) 

(4.12) 

The torque for large Sz is positive if ,u < l / d z .  In contrast, the torque for SZ = 0 is 
positive, zero or negative if ,u is less than, equal to or greater than 1, respectively. A 
torque zero crossing is anticipated for l / d 2  > ,u > 1 (we are working in a regime where 
d < 1) and can be shown to occur at 

(4.13) 

Note that Q,+m as ,u+ l / d 2 .  
The essential features of the torque function can be deduced from the above, from 

which it is seen that the parameters ,u and d play a central role. Graphical examples 
appear in figure 13, with the curves denoting torque and the straight line friction. As 
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in figure 12, the intersection of the curves and the straight line represents a solution of 
(4.8). Also, the convention of figure 13 is that positive O denotes a thermally direct 
mode (cold fluid sinking) and negative O denotes a saline direct mode (salty water 
sinking). 

The three curves plotted in figure 13 correspond to y = 0.5, 1 and 2. It is clear that 
p > 1 potentially yields multiple equilibria consisting of both types of cells and that the 
saline mode (negative O) is persistently smaller in magnitude than the thermally direct 
cell. It is less obvious, but nonetheless true, that y < 1 can also yield multiple equilibria 
over a limited range of frictional parameters. The nature of the torque curve in this case 
is such that the allowable O-values are all positive; however, one is much smaller in 
magnitude than the other. We will argue shortly that this weaker root represents a 
disguised saline mode, in spite of its positive value. 

Taken as a whole, the structure of figure 13 is remarkably similar to figure 12 (b) and 
encourages us to identify analogous parameters between the two formulations. The 
obvious comparisons are between y in (4.9) and R as defined in Stommel’s model, and 
d in (4.10) and the heat-to-salinity timescale ratio, S, of Stommel’s model. Note how 
varying y relative to a value of 1 leads to the same type of multiple equilibria behaviour 
as does the R variations in figure 12(b). Note also that d < 1 leads to a finite range for 
p over which a true saline mode (52 < 0) develops. Figure 12(a) demonstrates this same 
behaviour as a function of S. 

These identifications yield some interesting and enlightening results. First, in his box 
model, Stommel based the density ratio, R, on the extreme values of temperature and 
salinity found in his reservoirs. In our loop model, we have formed a comparable 
density ratio from the volume-averaged salinity Sand total temperature range z. The 
dynamically significant density ratio, p, differs considerably from R, but may be 
understood in the following way. 

We might anticipate that the forced and diffusive variations of salinity in our loop 
would be O(A/K,) from (2.12~) (upon ignoring a). Certainly, this is consistent with 
(4.6) if 51 = 0, and represents a dynamical scaling for salinity. Ignoring advection in the 
heat equation similarly yields a temperature variation estimate of yd/ (y  + K ~ ) .  

Combining these demonstrates that an appropriate density ratio based on temperature 
and salinity variations is then pSA(y+ K ~ ) / ( c c T ~  K~ yd), which is precisely our definition 
of y and supports its interpretation. 

The role of the timescale ratio 6 in Stommel’s model is played here by d =  
K,/ (Y+ K ~ ) :  d < 1, which is consistent with the Stommel analysis, is due in large part 
to the strong negative feedback physics encapsulated in y. What is interesting is that 
the role of the salinity relaxation time is played by K~ which, in turn, is entirely 
independent of boundary exchange processes. A similar result was noted in the case of 
purely saline loop discussed in $3, where the timescale of salinity anomalies was also 
found to be independent of the surface boundary parameterization. 

While the notion that 6 < 1 in Stommel’s model finds support here, the notion that 
R > 1 bears some revisiting. Our effective density ratio y involves a number of 
quantities whose values are not well known. While ,f3S/aG % 4 seems reasonable, the 
relative value of, for example, A / K ~  is not known well enough to guarantee the size of 
p relative to 1. It seems advisable to consider all possibilities for y .  

Another important point implied by figure 13 is that the saline and thermal modes 
are impossible in certain regimes of the effective density ratio p. For y < 1 there is no 
stable saline solution, but there is always a stable thermal solution. For p > 1 there is 
always a stable saline solution; however, for A larger than a certain critical value there 
is no stable thermal solution. The non-existence of either the thermal or saline mode 
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FIGURE 14. Numerical results: as figure 13 except that the solutions have been numerically generated. 
Blank areas denote zones of instability. Where available, the solutions closely resemble those in figure 
13. K~ = K~ = 0.1, y = 0.5 and h = 0.015. 

resembles the situation in the Stommel(l961) box model. It is interesting to note that 
strong freshwater flux also causes the thermal mode to collapse in two- and three- 
dimensional thermohaline circulation models. The stability boundary of the thermal 
mode in these oceanic general circulation models is very difficult to predict. The exact 
stability boundary of the thermal mode for a box model can be calculated, in principle, 
by the approach discussed in Appendix B. However, in the present case, this approach 
yields a cumbersome cubic equation. Nevertheless, this stability boundary is closely 
related to the effective density ratio p = AR(y + K ~ ) / ( K ~  yd), with larger ,LL favouring 
stable saline modes only. Since ,u is linearly proportional to the freshwater forcing, if 
other parameters are fixed, an increase in h will eventually lead to a catastrophic 
transition from the thermal mode to the saline mode. 

4.2. Numerical solutions and stability 
It remains for us to test several aspects of the above solutions. First, the above analysis 
implicitly assumes that a steady-state assumption is justified. Our attempts at a stability 
analysis have also failed to yield clear characterizations. It is useful to consider such 
issues by numerical methods. 

Perhaps the most significant prediction of the previous subsection is the sensitivity 
of the loop behaviour to the value of p. In figure 14, we present the results of related 
sets of numerical experiments. Several lines appear on figure 14 and each refers to a 
given set of experiments as follows. The parameters K~ = K~ = 0.1, y = 0.5 and h = 
0.15, and are fixed in all experiments. (Note that K~ = K~ here : while there are some 
interesting solution characteristics which depend upon K* =l= K ~ ,  we choose to focus as 
clearly as possible on the effect of the different boundary conditions on temperature 
and salinity by assigning the two diffusions the same value. This will be true of all the 
experiments described here.) A value of R was then chosen and our numerical loop 
model was integrated to a steady state (assuming one existed) for a wide variety of 
a-values. This experiment was repeated for several different R-values and initial 
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FIGURE 15. Saline limit cycle: gravitational torque versus angular velocity. All parameters here are 
fixed, thus the plot is of a limit cycle. Note that the Q-values are relatively weak and of both signs. 
Calculations using both natural and virtual salt flux boundary conditions are shown. The arrows 
indicate the direction of the oscillation. 

conditions, thereby hopefully locating any available solutions, steady or transient. Net 
torque of the stationary solutions is plotted against R ;  hence, figure 14 is analogous to 
figure 13. 

The reason for varying R is that this procedure provides a simple way of varying p. 
The displayed R values are R % 1.4,2.8 and 5.6, corresponding to p = 0.5, 1 and 2. We 
also mention that in tests where the other parameters were varied such that they 
obtained the above y-values, the results in figure 14 were replicated, provided that A / K ~  
was small. 

Note that many of the essential ingredients of the analytical solutions appear here, 
as well as some essential distinctions. Most importantly, both thermal and saline direct 
cells appear for y = 2. This is consistent with our earlier analysis. The torque curves 
are discontinuous, however. For example, the y = 2 line stops at a value of 52 - 0.2, 
and no values are plotted for 0 < 0 < 0.2. The reason for this is that the thermally 
direct mode is numerically unstable for these R-values. Referring again to figure 13, 
regimes in which multiple equilibria are possible actually possess three solutions. It is 
always the case that two of these solutions are thermally direct and one is saline. Of 
the thermal modes, one is considerably weaker than the other. In figure 14, these weak 
modes occur for the Q-range in question and our results here constitute numerical 
evidence that these solutions are unstable. We find numerically that, as a increases, 
thermal modes spontaneously flip to saline modes at a critical value. At this point, 
starting from the saline mode, increases or decreases of ct result in saline cell solutions. 
Stommel (1961) was able to explicitly calculate the stability of his multiple equilibria; 
our results here are entirely analogous to his. 

The results for y < 1 are also in agreement with our analytical expectations. Note 
that only thermal modes are available. This differs from the earlier y > 1 case, in which 
solutions exist for all 0. More than one solution also occurs for certain a-values if p 
is only slightly less than 1. (In this case, the analytical solution shows that the 
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gravitational torque at 52 = 0 is very small and the structure of the curve is flat. An 
appropriate value for a results in the frictional torque line intersecting the gravitational 
torque curve three times, all on the positive-52 side. As before, the middle solution is 
unstable. Numerically, we only see the smallest and largest 52-solutions.) The case of 
,u slightly less than 1 thus exhibits the interesting feature of multiple stable thermally 
direct cells. It is clear from the curve, however, that one of these two modes has a 
considerably weaker 52-value associated with it. Further, we find that the temperature 
structure of these modes is always roughly the same as the boundary temperature 
profile. (Note that this is in keeping with (4.7).) Such weak overturning coupled with 
a maximum temperature effect is only possible if salinity is a dominant factor in 
determining density. The impact of the salinity is in turn enabled by the sluggishness 
of the flow. Thus, we see that the weaker thermally direct solution here is in reality a 
saline mode, disguised by a thermally direct velocity field, which in turn exists because 
of the details of the parameters. 

We could have also plotted in figure 14 the analytical curves for comparison to the 
numerical results. This we have not done because no new information is added: the two 
curves are virtually indistinguishable. 

Thus we conclude that this series of tests supports the previous analytical solutions. 
We also mention that A / K ~  = 0.15 (as it is here) is also not very small, thus hinting at 
the robustness of the results. 

4.3. A saline mode limit cycle 
The attractor basins for the steady solutions of the Stommel model apparently occupy 
all of the phase space; the only time dependence the system admits occurs during 
transitions from one state to the other. These in turn generally require sizable 
perturbations to initiate. It is of interest that our system displays a self-sustaining 
oscillation, and we now describe its properties. 

Figure 15 is an example plot of the limit cycle of the loop oscillator. The plot is of 
torque versus 52. The parameters appropriate to this experiment are h = 0.015, y = 0.5, 
a = 0.01, K~ = K~ = 0.04, and R = 2.0, yielding an effective density ratio of ,u = 1.1. 
Thus, multiple equilibria are available according to the analysis of the previous section. 
Note that the 52-values in figure 15 are small in magnitude and both signs appear. The 
former fact suggests that the limit cycle reflects saline mode dynamics. Indeed, if the 
loop oscillator model is started from appropriate initial conditions for these same 
parameters, the system approaches a steady thermally direct cell whose magnitude is 
captured by the preceding steady-state analysis. 

Another curious feature of this limit cycle is its dependence on diffusion. For all 
other parameters fixed, we find first the appearance of steady saline modes as diffusion 
decreases (and thus as ,u increases beyond I), followed by the onset of the limit-cycle 
dynamics for smaller K~ = K ~ ,  and thence back to a steady saline mode for yet smaller 
K~ = K ~ .  The parameters used for the limit cycle in figure 15 exhibit the first transition 
at about K~ = K~ = 0.04. The collapse back to a steady saline mode occurs at K~ = 

= 0.01. These transitions have been determined numerically; our attempts to define 
the stability boundaries analytically have failed. 

To explain the oscillation dynamics, and the above transitions, it is useful to recall 
the results in $ 3  regarding the nature of ‘spike-like’ salinity profiles in the loop in the 
presence of weak diffusion. The tendency there is for salinity to collect at preferred 
locations owing to the effects of evaporation-driven convergence. 

Here, the initial onset of steady saline modes occurs for strong enough diffusions 
that the salinity profiles remain relatively spread throughout the loop; however, 



Fluidjlow in loops driven by freshwater and heatfluxes 18 1 
reductions in the diffusion allow the salinity anomalies to grow in magnitude. Consider 
now the sequence of events in the limit-cycle parameter regime, beginning with the 
growth of a positive salinity anomaly. First, since the motion is slow, the thermal 
contribution to the torque is essentially always at its maximum and acting to accelerate 
the flow in a positive direction. However, as the salinity anomaly grows under the 
evaporative side of the forcing, it eventually controls the net torque and negative 
circulation develops. The salinity anomaly goes with it, thus moving into regions of 
less-intense convergence (and possibly even divergence). Diffusion is then able to more 
effectively spread the anomaly, thus reducing its amplitude and its effect on net torque. 
Inertia causes the fluid to overshoot its equilibrium point; hence, the system eventually 
enters a state where the weakened anomaly permits the thermal torque to control the 
acceleration, and thus to generate a counterclockwise flow. As the anomaly swings 
back, it comes under the influence of increasingly convergent flow and grows in 
amplitude. This oscillation is self-sustaining in the proper parameter regime. We also 
mention that Welander (1986) found self-sustaining saline limit cycles in his relaxation- 
based loop oscillator. 

A further reduction in diffusion apparently permits the salinity anomaly to intensify 
beyond a critical value, and associated with this is a loss of the oscillation. The new 
steady equilibrium resembles a relatively sharp saline blob near the bottom of the loop; 
we shall discuss this limit more quantitatively in a moment. 

4.4. Limit-cycle instability 
A final interesting aspect of the saline limit cycles is that they become unstable. Again, 
this is a feature that we have discovered numerically and that is dramatically different 
from the above transitions between steady saline modes and saline limit cycles. Those 
transitions appeared for varying p (recall that the limit cycles occurred for a given 
range of diffusion), while we now focus on a phenomenon occurring for constant p. We 
discuss a case for A / K ~  < 1 and ,LA > 1 (so both thermal and saline modes exist) and for 
which a saline limit cycle also exists. What we have found is that reductions of a 
(friction) destabilize the limit cycle such that the system spontaneously transitions to 
the thermal direct mode. This occurs because a reduction in friction allows faster 
circulation. The salinity anomaly, when weakened under the precipitation, is then less 
able to regain its amplitude. In contrast, the rapid relaxation of temperature always 
ensures the existence of a maximum buoyant temperature torque. Our calculations 
show that in the proper parameter regime, the system reverts to the thermal mode. 
There is no analogue of this instability in the box model; as discussed by Stommel, his 
saline modes are always stable. The only possible mode of state flipping which could 
be parametrically forced involved a transient frictional increase, thus initiating a flip 
from a thermal to a saline mode. Here, we emphasize that a decrease in friction can 
initiate a transition to a thermal mode. The dependence of this instability on the system 
parameters is complicated, however, and we do not have a complete understanding 
of it. 

4.5. The weakly diyusive limit 
The analysis presented earlier applied for small A / K ~ .  The previous numerically 
generated steady states were all consistent with this constraint and yielded results in 
agreement with the predictions. It remains to examine the solutions for which A / K ~  is 
not small, a limit not as readily amenable to analysis but easily handled numerically. 

The parameter p tends to be large for A / K ~  not small; our previous analysis suggests 
that both saline and thermally direct cells should exist. Our numerical experimentation 
has confirmed this. The quantitative details of the thermally direct modes in this limit 



182 

I 

FIGURE 16. Numerical solutions for h/Ks = 1. The same convention as figure 13 is used. A naive 
application of the strongly diffusive solution works well for the thermal modes, but fails for the saline 
modes. h = K . ~  = K~ = 0.015, and y = 0.5. 
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FIGURE 17. Salt profiles for h/Ks = 1, and h = K~ = K~ = 0.015, a = 0.01, R = 5.6, and y = 0.5: 
azimuthal angle from - x to x versus salinity amplitude. The dashed line is from a thermally direct 
mode and the solid line is from a saline mode. Note in the latter the appearance of an isolated salinity 
maximum for small positive angles, while the remainder of the loop is relatively fresh. 

are also explained well by the earlier solution. This is illustrated in figure 16, which 
displays the numerically determined phase-space behaviour of the loop oscillator for 
A / K ~  not small. These experiments employ A = K~ = K~ = 0.015, (i.e. A / K ~  = l.O), and 
y = 0.5. The three employed R-values correspond to those in the earlier small A / K ~  
experiments, and yield p-values of roughly 11, 5.6 and 2.8. 

The saline modes are, however, not well predicted quantitatively by (4.8). Examples 
of salinity structure for both the thermal and saline modes appear in figure 17, which 
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also suggests why the small-h/Kc, solution quantitatively fails for the saline mode. The 
salinity profile consists of relatively fresh water with a mass of highly salty water 
located near the loop bottom (i.e. near 0 = 0). Note that the maximum salinity value 
is roughly 1.35 and the minimum is roughly 0.75. Thus, the salinity distribution is not 
symmetric in extreme values. Such structure cannot be well approximated by sin 0 and 
COSB terms only, which in turn represent the lowest-order terms of the Taylor 
expansion for the exponential functions in the exact salinity solution (see (4.6)). 

To understand the physical reasons for the appearance of this structure, it is again 
useful to recall the results of $3.  The ‘salt-spike’ solutions there arose because the plugs 
spent most of their time under the regions of evaporation, and hence were intensified 
by the associated convergence. Similar dynamics apply here; their relevance can be 
demonstrated by following the procedure used earlier. Namely, diffusion is neglected 
entirely and we assert 

s = 2 q e  - eo) (4.14) 
as an ansatz. The factor 27t appears from normalization and 6 represents the usual 
Dirac delta function. Thus we search for salinity solutions concentrated at angle Bo 
within the loop, and propose to calculate Bo. 

Inserting (4.14) in (2.12~) with K~ = 0, multiplying by any non-trivial periodic 
function and averaging over the loop yields 

0 = -hcose,. (4.15) 
Assuming K~ = 0 and a weak D (the latter an unnecessary mathematical simplification) 
yields 

T =  Asin8 (4.16) 
as the leading-order temperature solution. The momentum equation (2.12~) thus 
becomes 

which, given that a and h are small, has the solution 
sin 0, - aA cos 0, = A/2R, (4.17) 

sin 8, w A/2R > 0 (4.18) 
to a high degree of accuracy. For small Bo, (4.15) gives 

D % - A .  (4.19) 
It is interesting that we have found numerical support for these formulae, 

particularly for (4.19). Equation (4.18) is also consistent with the structure in figure 17. 
The solution there consists of a salinity maximum off-centred from the bottom slightly 
in the counter-clockwise direction. This in turn provides just enough salinity torque to 
almost cancel the temperature torque (note that friction is unimportant in the solution). 
Some overturning is still required to maintain the salinity anomaly off-centre, thereby 
providing a torque. Equation (4.19) demonstrates this velocity is O(h) in magnitude, 
and is just sufficient to keep the salinity blob under the evaporation. The utility of these 
solutions is all the more surprising given that the ansatz in (4.14) is not a particularly 
good approximation of the salinity structure. Nonetheless, the comparisons argue that 
the solution in figure 17 is related to the salt-spike solutions of $3. Its appearance 
accounts for the quantitative mismatch between the earlier analytical solution and the 
present numerical results. (A further discussion of the inaccuracy of the 52 predictions 
from the A / K S  + 1 theory appears below.) Its physical interpretation is of a system with 
weak enough mixing that all the heavy salt mass is trapped at the vessel bottom. No 
analogue of this structure appears in the box model. 
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FIGURE 18. A comparison of salinity profiles for A / K ~  = 3. The solid curve comes from an experiment 
using natural boundary conditions and the dashed curve from one with virtual salt flux. The 
parameters are h = 0.015, K~ = K~ = 0.005, y = 0.5 and R = 0.5. There is a coarse scale agreement 
between the profiles, but the salinity magnitudes and structure quantitatively disagree. 

4.6. Virtual salt flux boundary conditions 
We have also examined loop oscillator behaviour subject to the so-called virtual salt 
flux boundary condition (VSF) to learn about relevant dependencies of the solutions. 
It is a simple matter to show in this case that (2.12) become 

S, + QS, = h sin 8 + KS See, 

&+O& = -y(T-Asin8)+K, Go, 
(4.20) 
(4.21) 

while (2.12~) is unchanged. (Note that S = 1 has been used in (4.20).) The exact steady 
solutions of (4.20) and (4.21) are 

Thus 

dy(y + K ~ )  sin 8- ydOcos 8 T =  
Q2 + (y  + K T y  

9 (4.22) 

(4.23) 

(4.24) 

which is identical to (4.8). Virtual salt flux conditions thus yield generally the same 
thermal mode behaviour as do freshwater flux conditions. This is perhaps not 
surprising as salinity plays a minor role in the thermal mode. 

The difference between NBC and VSF condition behaviour hence occurs for saline 
modes and the differences here are mainly quantitative. Among the interesting saline 
mode behaviours are the limit-cycle development and the limit-cycle instability. 
Analogues of all these have been found using VSF. On the other hand, the details of 
where in parameter space these behaviours set in, and the system values, can differ from 
those computed using the NBC. One example is to be found in the limit cycles 
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FIGURE 19. The sensitivity of f2 to boundary conditions: virtual (dashed curve) and natural (solid 
curve) boundary conditions were used in these experiments. h = 0.015, K~ = K~ = 0.005, y = 0.5, and 
R = 0.5. The virtual salt flux experiment consistently returns overturning rates smaller than the 
natural boundary condition experiment. 

appearing in figure 15. The smaller of the two limit cycles was computed using the NBC 
and the larger using VSF. There is clearly a significant difference in the amplitude of 
the oscillation as well as in the overturning rates. A second difference is illustrated in 
figure 18, where salinity profiles appropriate to the parameters h = 0.015, K~ = KT.= 

0.005, and y = 0.5 are shown. Note that the structure and amplitude of the salinity 
profile differs. These can be partially accounted for because VSF constrains the shape 
of the salinity profile. The amplitude differences also occur because the usual 
implementation of VSF employs a globally averaged salinity value in specifying the 
flux. (In this way the phenomena of the salt explosion are avoided.) This constraint has 
the effect of underestimating the actual flux for high salinity values and overestimating 
it for low values. 

Finally, we demonstrate the sensitivity of the overturning rate to the applied 
boundary conditions in figure 19, where we compare the phase-space plots for the loop 
oscillator. The convention in this plot is the same as in several previous ones, with the 
main difference being that we focus on saline modes only. The parameters for this set 
of experiments are h = 0.015, K~ = K~ = 0.005, y = 0.5 and R = 0.5. The VSF 
overturning rates are consistently more sluggish than the NBC rates. This reflects the 
‘broader’ salinity profile of the VSF experiments (see figure 18). As a result of being 
spread out, the salinity torque is weakened in magnitude and drives a slower 
overturning. 

A last point here is that the VSF system yields an overturning formula identical to 
that of the small-A/K, limit. The relative comparison in figure 19 thus gives an 
indication of the errors inherent in the application of (4.8) to saline modes for A / K ~  not 
small. 
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5. Discussion 
The preceding analysis has explored the haline and thermohaline convective 

behaviour of a simple yet non-trivial model, i.e. the loop model. This study is meant 
to complement and extend the enormously useful and more traditional box model 
studies by graduating to the next level of sophistication, while retaining tractability. 
One of the main advantages here is that diffusion can be explicitly included. Box 
models, by their construction, cannot completely include such effects. We have also 
employed a more accurate representation of surface exchange physics by explicitly 
including freshwater flux, rather than virtual salt flux. Indeed, a complementary aim of 
this analysis was to examine a haline buoyancy-driven system of sufficient simplicity 
that we could isolate its dependence on freshwater flux. Comparison of solutions 
consistent with both boundary conditions has allowed us to assess their impact on 
system behaviour. 

Freshwater flux is capable of driving haline oscillations in the loop model, although 
the picture is somewhat modified from that of GCMs. As opposed to virtual salt flux, 
which leads directly to local salinity modifications, salinity concentrations subject to 
natural boundary conditions arise because of the secondary velocities directly related 
to evaporation and precipitation. These in turn lead to buoyancy distributions which 
drive the loop circulation and provide a feedback which intensifies the anomalies. In 
a sense, it is the nature of this nonlinear model to establish a coherence between salty 
waters and regions of evaporation (clearly this feedback appears in the salt equation). 
This coherence leads to our most dramatic result, i.e. the formation of spikes. We 
mention this because the above coherence is often recognized as the cause of the so- 
called salt explosion in models with ‘modified’ virtual salt flux boundary conditions 
(i.e. S appears rather than s). Here the natural boundary condition generates a 
dramatic increase in salinity magnitude, but it remains bounded and the growth leads 
to interesting physical behaviour. 

It is also appropriate to comment on the evolution of perturbations subject to the 
natural boundary condition. First, perturbations are advected by the mean flow. 
Secondly, the stability of the perturbations is independent of the strength of the 
boundary forcing. In fact, such behaviour is quite consistent with the physical idea that 
salinity anomalies do not induce a negative feedback to facilitate their removal, as do 
thermal anomalies. Rather, we find that the decay timescales depend entirely on the 
internal system parameters, namely diffusion and viscosity. These generally are 
relatively weak and generate decay timescales long compared to the relaxation times 
employed in most models. Thus, salinity anomalies are carried by currents where they 
are formed, and they can travel to quite remote places. We speculate that this is related 
to the persistence of salinity anomalies (such as the North Atlantic Great Fresh Event 
of the 1970s) in the open ocean. 

A great deal of similarity has also been found between the loop oscillator and box 
model behaviours, which has aided us in our analysis. This comparison has allowed us 
to compute certain of the box model parameters from first principles. An example is 
R, the box model density ratio. We find the effective density ratio, p, of the loop model 
to be a function of forcing, relaxation and diffusion, and to play a central role in 
determining the existence and type of multiple equilibria. Thus, we find a dynamically 
significant role for diffusion in the loop model, as opposed to the somewhat more 
passive role it obtains in box models (Thual & McWilliams 1992). An unexpected result 
is that ,u is not unambiguously greater than unity, a result which opens the possibilities 
of multiple thermally direct cells. A second example is the identification of relaxation 
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timescale ratios with our parameter d = K ~ / ( Y  + K ~ ) .  Here a value for this ratio less 
than 1, as typically assumed, is on much firmer footing. It is nonetheless surprising that 
this ratio is entirely devoid of the freshwater flux physics driving salinity variations. 

As a final point, it is useful to point out the unique dependence of the system 
behaviour on the various boundary specifications. Not surprisingly, the relaxation 
condition departs most dramatically from the natural boundary condition in 
behaviour. It does not create spikes, its timescales differ quantitatively and the details 
of its steady solutions are also qualitatively different. Virtual salt flux (based on average 
salinity) tends to mirror the natural boundary condition reasonably well in some 
parameter regimes. It inaccurately captures the physics leading to limit-cycle behaviour, 
however, and therefore does not perform well with regard to haline oscillations. It also 
tends to give an uncontrollable production of negative salinities. This is associated with 
inaccuracies of the specification of salt flux arising from the use of an averaged salinity 
in the boundary condition. We do find quantitative support for the use of the virtual 
salt flux condition when studying thermally direct modes, for the reason that salinity 
plays a minor role in such solutions. The same cannot be said for saline modes, 
however. In certain parameter regimes, namely weak freshwater flux-strong diffusion, 
the steady saline mode solutions are well predicted using virtual salt flux. The 
characteristics of the saline limit cycle and its stability are, however, sensitive to the 
employed boundary condition, as are the salinity profiles and the overturning rates in 
the weakly diffusive limit. 

Evidence for saline mode circulations is to be found in paleoclimatic data and has 
motivated interest in the study of saline modes. Our results suggest that freshwater flux 
boundary conditions are preferable for this task in order to better ensure accurate 
modelling of mean structure, overturning and transients. A practical concern relevant 
to human impact on climate involves the stability of the modern thermal mode 
thermohaline circulation. Such interest is implicit in the transition studies conducted 
by, for example, Nakamura, Stone & Marotzke (1994). Given the sensitivity of GCMs 
to minor variations of their parameters, a premium should be placed on accuracy in 
modelling the details of the system. The accurate modelling of saline mode dynamics 
would thus seem to be advisable even in models of present day climate and our results 
emphasize a central role for the natural boundary condition in achieving this goal. 
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Appendix A. An analysis of virtual salt flux conditions 
The equations are 

S,+SZS, = -hcos8+KSoB, S2, = -aQ-(Ssin8). (A 1 a, b) 

The solution form S = 1 +a( t )  cos (0) + b(t) sin 0 exactly transforms the above into 
three coupled ordinary differential equations : 

a,+SZb = -h-aK, b,-Qa = - b K ,  52, = -uQ-;b. (A 2a-c) 
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Higher modes, which may appear because of initial conditions, can be shown to decay 
exponentially with a timescale proportional to K - ~ ,  Now consider a - A - K 4 1 and 
expand (A 2) in A. At lowest order 

a,, - 52, b, = 0, b,, + 9, a. = 0, a,, = -ibo, (A 3 e c )  

which after some manipulation yield 

(A 4) 

where ro and C are as yet unknown, 6, = a,, a, = ro cos 8, and b, = rosin 0,. At O(h), 
we obtain 

a,t+90bl+52,b, = -l-a,I?, bl,-520al-Q,a, = -b,I?, Qlt+@, = -oiO,, 
(A 5ec) 

where oi = a/h and I? = ~ / h .  It is a simple matter to show that the vectors (al, b,, 52,) = 
(a,, b,,O) and (-;, 0, 52,) solve the adjoint operator of the left-hand sides of (A 5). 
We thus obtain two solvability conditions for purely periodic solutions, i.e. 

(9; = ;ro cos 0, + c, 

a,dt-ri TI?, 0 = -2  a0dt-T-2oi Oidt, (A 6a, b) IOT ’ 
which relate the unknown r, and C to the system parameters Oi and k. 

Appendix B. A freshwater flux version of Stommel’s (1961) box model 
B. 1. The equivalent formula for the 52-equation 

According to Huang et al. (1992), the steady temperature solution for the box model is 

T =  (1 +p)aT,/(1+2cIT-S[); (B 1) 
the salinity solution is 

(B 2) 
where T = aT,(T,- T,) and S = /3So(S,-S,), p is the precipitation rate, and the 
overturning rate f is linearly proportional to the density difference f = c ( T - S ) .  
Introducing 52 = 2f, we have an equation equivalent to the a-equation (4.1) : 

s = PPSO/(lf I), 

In the case of virtual salt flux formulation, the first term on the right-hand side is 
replaced by l/[(l + 1521) R] . 

B. 2. The lower limit of the saline mode 
In a saline mode the density gradient due to salinity must be larger than that due to 
the temperature. Note that in a very slow saline mode, temperature is largely set by the 
reference temperature, and the upper bound of the salinity difference is just twice the 
mean salinity; thus, we have 

(B 4) 

R 2 1/2. (B 5 )  

aT, < P(S, - S,) < 2PS0, 
which is equivalent to a lower limit in R for the saline mode: 

In addition, Huang et al. (1992) point out that there is a ‘forbidden’ regime, in which 
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both interbox exchange rates are equatorward, i.e. pointed away from the region of 
excess precipitation. The corresponding state is the trivial solution given by 

q = T,, T, = 0, s, = 2s0, s, = 0. 

Accordingly, the condition defining this regime is 

thus, (B 2) is invalid within this forbidden regime. Because S,  - S,  = 2 for this special 
state, the corresponding regime in terms of the density ratio is 

1 P  < R < - + -  
1 
2 ~ C U T ,  2 ~ C U T , '  

Thus, when R < +--p/(4caT,), there is no stable saline solution. Thus the box model 
based on freshwater flux is similar to the box model based on relaxation conditions. 
The critical value of R close to + in the present case is due to the possibility of all the 
salt being flushed into the southern box. In the relaxation case, total salt is not 
conserved, so the maximum salinity difference is just So, instead of 2S0 as in the case 
with the natural boundary conditions. 

On the other hand, the behaviour of a model based on the virtual salt flux 
formulation is rather different. There is always a saline mode, no matter how small the 
density ratio. Of course, such a saline mode may not be a physical solution. As 
the overturning becomes slower, the salinity difference diverges, and salinity in the 
northern box can become negative. Such a non-physical result nonetheless represents 
an acceptable mathematical solution. 

B. 3.  The upper limit of the thermal mode 
The non-existence of the thermal mode can be explained as follows. The maximum 
temperature difference is T,. Since the salinity torque acts against the thermal torque, 
the circulation rate satisfies 

As a result, the salinity satisfies 
f < caT,. (B 9) 

However, if the density gradient due to this salinity is larger than that due to 
temperature, i.e. 

p S = - R > u T ,  P or P - > R ,  a& 
C C 

then such a thermal mode is impossible. From the analysis above, it is clear that for 
a given density ratio R, strong friction (small c)  or strong freshwater flux eliminates the 
thermal mode. 

The upper limit of the thermal mode can be estimated more precisely. The critical 
situation is the case when the straight line, representing frictional torque, just touches 
the gravitational torque curve in the a-diagram, figure 13. Writing the 0-equation as 

Af = Fcf), (B 12) 
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the location of this point,&, is determined by 

W. K. Dewar and R. X. Huang 

For the natural boundary condition model, this leads to 

with solution 
4R~( l+f )~- ( l+p)Al+2f)  s o ,  

Assuming p < 1, the approximate solution is 

Substituting into (B 12), our estimate of the boundary is 

caT, 
4R(1+2caT,)' 

For the case discussed by Huang et al. (1992), (B 17) predicts the limit of the thermal 
mode with an error of less than 5 %. 
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